Based on K. H. Rosen: Discrete Mathematics and its Applications.

Lecture 22: Introduction to Probability. Section 7.1

1 Introduction to Discrete Probability

An experiment is a procedure that yields one of a given set of possible outcomes. The sample space of the experiment is the set of possible outcomes. An event is a subset of the sample space. Laplace's definition of the probability of an event with finitely many possible outcomes will now be stated.

Definition 1. If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of E, then the probability of E is

$$
\mathrm{P}(E)=\frac{|E|}{|S|}
$$

Remark 2. As a consequence of our definition we have, for any event E,

$$
0 \leq \mathrm{P}(E) \leq 1
$$

An event E with probability $P(E)=0$ is called impossible. An event E with probability $P(E)=1$ is called certain.

Theorem 3. (Probability of the complement) Let E be an event in a sample space S. The probability of the event $\bar{E}=S \backslash E$, the complementary event of E, is given by

$$
P(\bar{E})=1-P(E)
$$

Theorem 4. (Probability of the union) Let E_{1} and E_{2} be events in the sample space S. Then

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) .
$$

Remark 5. If the events E_{1} and E_{2} satisfy $P\left(E_{1} \cap E_{2}\right)=0$, the property above becomes

$$
P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)
$$

Events that satisfy $P\left(E_{1} \cap E_{2}\right)=0$, that is, events E_{1}, E_{2} that cannot occur simultaneously, are called mutually exclusive.

